Gunadarma

Gunadarma

Matematika & IAD BAB 4 Materi

Sabtu, 30 Maret 2013


Materi

A. MATERI
a. Pengertian materi
Materi disebut juga zat adalah sesuatu yang memiliki massa, volume dan sifat-sifat.
b. Wujud materi
Menurut wujudnya materi dikelompokkan menjadi tiga yaitu : padat, cair dan gas.
          Materi yang tergolong dalam wujud gas, misalnya : udara, gas bumi, gas elpiji, uap air, gas kapur, kapur barus.
          Materi dalam wujud cair misalnya : air, minyak goreng, alkohol, bensin, solar, larutan gula, air laut.
Materi dalam wujud padat misalnya : baja, batu dan kapur.
c. Sifat Materi
          Jenis materi dikenal berdasarkan sifat-sifatnya dan dibedakan menjadi dua macam, yaitu sifat kimia dan sifat fisika
1. Sifat fisika : Yaitu sifat materi yang berkaitan dengan peristiwa fisika,
misalnya : massa jenis, titik didih, titik lebur, kalor lebur, rasa, warna, dan bau
Contoh : – Hidrogen sulfida, zat yang tidak dapat dilihat, karena tidak dapat dilihat tetapi dikenal dengan baunya.
- Air massa jenisnya 1 gram siap dan titik didihnya 100oC
- Besi melebur pada 1500oC
2. Sifat Kimia : Sifat kimia adalah sifat suatu materi yang berkaitan dengan
peristiwa kimia yang meliputi
2.1. Keterbakaran : Tingkat kemudahan suatu materi dapat terbakar,
misalnya :
- Asbes, besi, aluminium, air tidak bisa terbakar
- Minyak lebih mudah terbakar dari pada kayu
2.2. Kereaktipan : Mudah atau tidaknya suatu materi bereaksi, misalnya
tingkat keterbakaran, inisasi, peruraian dan pembentukan.
Misalnya : – Zat-zat yang dapat terionisasi soda abu (kostik soda), asam sulfat, asam clorida, garam dapur, kalium sulfat.
- Zat-zat yang dapat terurai
- Batu kapur dipanasi terurai menjadi kapur tohor
(kapur sirih dan gas karbon dioksida).
- Mercuri oksida dipanasi menjadi logam mercuri dan gas oksigen.
3. Perubahan Materi
          Materi dapat mengalami perubahan jika dipengaruhi oleh energi kalor, listrik atau kimia perubahan materi dibedakan dalam dua macam yaitu perubahan fisika dan perubahan kimia
a. Perubahan fisika :
          Suatu materi mengalami perubahan fisika, jika jenisnya tidak berubah, meskipun sifat-sifat fisikanya mengalami perubahan.
Misalnya : Es jika dipanasi berubah air selanjutnya menjadi uap.
          Dalam peristiwa ini terjadi perubahan wujud, yaitu pada menjadi cair akhirnya menjadi, tetapi jenis zat tetap yaitu air.
b. Perubahan Kimia
Suatu materi mengalami perubahan kimia jika jenis zat berubah
Perubahan kimia disebut juga reaksi kimia atau reaksi
Misalnya :
1. Batu kapur dipanasi menjadi kapur sohor dan karbon dioksida.
Batu kapur, kapur sohor dan karbon dioksida tiga zat yang berbeda
Pada peristiwa ini zat sebelum dan sesudah reaksi jenisnya berbeda
2. Kertas dibakar, zat yang terjadi sesudah pembakaran, abu, asap disertai energi kalor dan cahaya.
Zat sebelum dibakar kertas, zat setelah dibakar abu dan asap yang berbeda jenisnya dengan zat sebelum dibakar yaitu kertas.
Klasifikasi materi
          Zat-zat yang kita temukan di alam semesta ini hanya ada dua kemungkinan, yaitu adalah zat tunggal dan campuran
·    Zat tunggal
          Zat tunggal adalah materi yang memiliki susunan partikel yang tidak mudah dirubah dan memilik komposisi yang tetap. Zat tunggal dapat diklasifikasikan sebagai unsur dan senyawa. Zat tunggal berupa unsur didefinisikan sebagai zat yang tidak dapat diuraikan menjadi zat lain yang lebih sederhana. Unsur besi tidak bisa diuraikan menjadi zat lain, jika ukuran besi ini diperkecil, maka suatu saat akan didapatkan bagian terkecil yang tidak dapat dibagi lagi dan disebut dengan atom besi.
          Unsur di alam dapat dibagi menjadi dua bagian besar yaitu unsur logam dan bukan logam (bukan logam).
          Unsur logam umumnya berbentuk padat kecuali unsur air raksa atau mercury (Hg), menghantarkan arus listrik dan panas. Logam permukaannya mengkilat dapat ditempa menjadi plat ataupun kawat. Saat ini kita lebih mengenal dengan nama aliasnya, seperti unsur Ferum dengan lambang Fe yang kita kenal dengan Besi. Aurum dengan lambang Au adalah unsur Emas, dan Argentum (Ag) untuk unsur Perak.
          Unsur bukan logam memilki sifat yang berbeda seperti; tidak dapat menghantarkan arus listrik, panas dan bersifat sebagai isolator. Permukaan atau penampang unsurnya tidak mengkilat kecuali unsur Karbon. Wujud unsur ini berupa gas, sehingga tidak dapat ditempa. Secara umum unsur bukan logam juga sudah kita kenal, seperti Oksigen dengan lambang O, Nitrogen dengan lambang N, dan unsur Sulfur dengan lambng S, dalam istilah kita adalah Belerang.
          Zat tunggal berupa senyawa didefinisikan sebagai zat yang dibentuk dari berbagai jenis unsur yang saling terikat secara kimia dan memiliki komposisi yang tetap. Senyawa terdiri dari beberapa unsur, maka senyawa dapat diuraikan menjadi unsur-unsurnya dengan proses tertentu.  Contoh senyawa yang paling mudah kita kenal adalah air. Senyawa air diberi lambang H2O. Senyawa air terbentuk oleh dua jenis unsur yaitu unsur Hidrogen (H) dan unsur Oksigen (O), dengan komposisi 2 unsur H dan satu unsur O.  Gambar 1.11 menjelaskan perbedaan unsur dan senyawa.
          Di alam senyawa dapat dikelompokkan menjadi dua bagian yaitu senyawa Organik dan senyawa Anorganik, pengelompokkan didasari pada unsur-unsur pembentuknya
          Senyawa Organik didefinisikan sebagai senyawa yang dibangun oleh unsur karbon sebagai kerangka utamanya. Senyawa-senyawa ini umumnya berasal dari makhluk hidup atau yang terbentuk oleh makhluk hidup (organisme).
          Senyawa ini mudah kita jumpai seperti ureum atau ure terdapat pada air seni (urin). Gula pasir atau sakarosa yang banyak terdapat didalam tebu dan alkohol merupakan hasil fermentasi dari lautan gula.
          Senyawa Anorganik adalah senyawa-senyawa yang tidak disusun dari atom karbon, umumnya senyawa ini ditemukan di alam, beberapa contoh senyawa ini seperti garam dapur (Natrium klorida) dengan lambang NaCl, alumunium hdroksida yang dijumpai pada obat maagh, memiliki lambang Al(OH)3. Demikian juga dengan gas yang terlibat dalam proses respirasi yaitu gas oksigen dengan lambang O 2 dan gas karbon dioksida dengan lambang CO2. Asam juga merupakan salah satu senyawa anorganik yang mudah kita kenal misalnya asam nitrat (HNO3), asam klorida (HCl) dan lainnya.
·    Campuran
          Campuran adalah materi yang disusun oleh beberapa zat tunggal baik berupa unsur atau senyawa dengan komposisi yang tidak tetap. Dalam campuran sifat dari materi penyusunnya tidak berubah.
Contoh sederhana dari campuran dapat kita jumpai di dapur misalnya saus tomat. Campuran ini mengandung karbohidrat, protein, vitamin C dan masih banyak zat zat lainnya. Sifat karbohidrat, protein dan vitamin C tidak berubah.
          Campuran dapat kita bagi menjadi dua jenis, yaitu campuran homogen dan campuran heterogen. Campuran homogen adalah campuran serba sama yang materi-materi penyusunnya berinteraksi, namun tidak membentuk zat baru. Untuk lebih jelasnya kita perhatikan contohnya larutan gula dalam sebuah gelas
          Larutan ini merupakan campuran air dengan gula, jika kita coba rasakan, maka rasa larutan diseluruh bagian gelas adalah sama manisnya, baik yang dipermukaan ditengah maupun dibagian bawah. Campuran homogen yang memiliki pelarut air sering disebut juga dengan larutan.
          Campuran homogen dapat pula berbentuk sebagai campuran antara logam dengan logam, seperti emas 23 karat merupakan campuran antara logam emas dan perak. Kedua logam tersebut memadu sehingga tidak tampak lagi bagian emas atau bagian peraknya. Campuran logam lain seperti perunggu, alloy, amalgam dan lain sebagainya.
          Campuran heterogen adalah campuran serbaneka, dimana materi-materi penyusunnya tidak berinteraksi, sehingga kita dapat mengamati dengan jelas dari materi penyusun campuran tersebut.
          Campuran heterogen tidak memerlukan komposisi yang tetap seperti halnya senyawa, jika kita mencampurkan dua materi atau lebih maka akan terjadi campuran. Contoh yang paling mudah kita amati dan kita lakukan adalah mencampur minyak dengan air, kita dapat menentukan bagian minyak dan bagian air dengan indera mata kita. Perhatikan pula susu campuran yang kompleks, terdiri dari berbagai macam zat seperti protein, karbohidrat, lemak, vitamin C dan E dan mineral



Pengenalan Unsur dan Sistem Periodik Unsur

          Unsur adalah zat murni yang dapat diuraikan lagi menjadi zat lain yang lebih sederhana dengan reaksi kimia biasa. Penulisan lambang unsur mengikuti aturan sebagai berikut:
1. Lambang unsur diambil dari singkatan nama unsur. Beberapa lambang unsur berasal dari bahasa Latin atau Yunani nama unsur tersebut. Misalnya Fe dari kata ferrum (bahasa latin) sebagai lambang unsur besi.
2. Lambang unsur ditulis dengan satu huruf kapital.
3. Untuk Unsur yang dilambangkan dengan lebih dengan satu huruf, huruf pertama lambang ditulis dengan huruf kapital dan huruf kedua/ketiga ditulis dengan huruf kecil.
4. Unsur-unsur yang memiliki nama dengan huruf pertama sama maka huruf pertama lambang unsur diambil dari huruf pertama nama unsur dan huruf kedua diambil dari huruf lain yang terdapat pada nama unsur tersebut. Misalnya, Ra untuk radium dan Rn untuk radon.
          Pada suhu kamar (25 C) unsur dapat berwujud Padat, Cair,dan Gas, secara umum unsur terbagi menjadi dua kelompok yaitu:
·    Unsur Logam: umumnya unsur logam diberi nama akhiran ium. Umumnya logam ini memiliki titik didih tinggi, mengilap, dapat dibengkokan  , dan dapt menghantarkan panas atau arus listrik.
·    Unsur Non Logam: umumnya memiliki titik didih rendah, tidak mengkilap,kadang-kadang rapuh tak dapat dibengkokkan dan sukar menghantarkan panas atau arus listrik.
          Senyawa adalah zat yang terbentuk dari penggabungan unsur-unsur dengan pembagian tertentu. Senyawa dihasilkan dari reaksi kimia antara dua unsur atau lebih melalui reaksi pembentukan. Misalnya, karat besi (hematit) berupa Fe2O3 dihasilkan oleh reaksi besi (Fe) dengan oksigen (O). Senyawa dapat diuraikan menjadi unsur-unsur pembentuknya melalui reaksi penguraian.
          Senyawa mempunyai sifat yang berbeda dengan unsur-unsur pembentuknya. Senyawa hanya dapt diuraikan menjadi unsur-unsur pembentuknya melalui reaksi kimia. Pada kondisi yang sama, senyawa dapat memiliki wujud berbeda dengan unsur-unsur pembentuknya. Sifat fisika dan kimia senyawa berbeda dengan unsur-unsur pembentuknya. Misalnya reaksi antara gas hidrogen dan gas oksigen membentuk senyawa air yang berwujud cair.
          Campuran adalah gabungan dari dua zat atau lebih yang hasil penggabungan nya masih mempunyai sifat yang sama dengan zat aslinya. Misalnya, campuran antara air dan gula menghasilkan cairan yang berasa manis.
          Campuran dapat berupa gabungan unsur, senyawa, atau keduanya. Campuran Homogen memiliki komposisi maupun wujud yang seragam. Misalnya air gula dan santan. Sebaliknya campuran heterogen memiliki komposisi yang tidak seragam. Misalnya, campuran antara air dan pasir. Campuran dapat dipisahikan menjadi zat-zat penyusun berdasarkan perbedaan sifat zat-zat penyusunnya, misalnya dengan penyaringan.
          Penulisan unsur dipermudah dengan adanya lambang unsur. Bagaimana mempermudah penulisan susunan senyawa? Caranya dengan menggunakan rumus kimia, yaitu gabungan lambang unsur sesuai unsur yang menyusun senyawa. Misalnya, lambang unsur natrium adalah Na dan lambang unsur klorin adalah Cl. Jika natrium direaksikan dengan klorin akan menghasilkan senyawa natrium klorida dengan rumus kimia NaCl. Nama umum NaCl ialah garam dapur.
          Sistem periodik unsur modern disusun berdasarkan kenaikan nomor atom dan kemiripan sifat. Lajur horizontal, yang selanjutnya disebut periode, disusun menurut kenaikan nomor atom, sedangkan lajur vertikal, yang selanjutnya disebut golongan, disusun menurut kemiripan sifat.
          Unsur segolongan bukannya mempunyai sifat yang sama, melainkan mempunyai kemiripan sifat. Setiap unsur memiliki sifat khas yang membedakannya dari unsur lainnya. Unsur-unsur dalam sistem periodik dibagi menjadi dua bagian besar, yaitu unsur-unsur yang menempati golongan A yang disebut unsur golongan utama, dan unsur-unsur yang menempati golongan B yang disebut unsur transisi (James E. Brady, 1990).
          Sistem periodik unsur modern yang disebut juga sistem periodik bentuk panjang, terdiri atas 7 periode dan 8 golongan. Periode 1, 2, dan 3 disebut periode pendek karena berisi sedikit unsur, sedangkan periode lainnya disebut periode panjang. Golongan terbagi atas golongan A dan golongan B. Unsur-unsur golongan A disebut golongan utama, sedangkan golongan B disebut golongan transisi. Golongan-golongan B terletak antara golongan IIA dan IIIA. Golongan B mulai terdapat pada periode 4.
          Dalam sistem periodik unsur yang terbaru, golongan ditandai dengan golongan 1 sampai dengan golongan 18 secara berurutan dari kiri ke kanan. Dengan cara ini, maka unsur transisi terletak pada golongan 3 sampai dengan golongan 12.
a. Periode
          Sistem periodik unsur modern mempunyai 7 periode. Unsur-unsur yang mempunyai jumlah kulit yang sama pada konfigurasi elektronnya, terletak pada periode yang sama.
Nomor Periode = Jumlah Kulit
b. Golongan
Sistem periodik unsur modern mempunyai 8 golongan utama (A).
Unsur-unsur pada sistem periodik modern yang mempunyai elektron
valensi (elektron kulit terluar) sama pada konfigurasi elektronnya, maka
unsur-unsur tersebut terletak pada golongan yang sama (golongan
utama/A).
Nomor Golongan = Jumlah Elektron Valensi



Energi

         Energi adalah kemampuan untuk melakukan kerja (usaha). Satuan energi menurut Satuan Internasional (SI) adalah joule, satuan energi yang lain: erg, kalori, dan kWh. Satuan kWh biasa digunakan untuk menyatakan energi listrik, dan kalori biasanya untuk energi kimia.
Konversi satuan energi:
1 kalori = 4,2 joule
1 joule = 0,24 kalori
1 joule = 1 watt sekon
1 kWh = 3.600.000 joule
Beberapa bentuk energi antara lain:
- Energi kimia adalah energi yang terkandung dalam zat, misal makanan, bahan bakar atau aki.
- Energi listrik, berasal dari arus listrik.
- Energi cahaya merupakan gelombang elektromagnetik, misal yang dipancarkan dari matahari atau lampu pijar.
- Energi bunyi dihasilkan oleh benda yang bergetar, misal gitar yang dipetik atau bel listrik.
- Energi nuklir berasal dari reaksi pembelahan atom (reaksi fisi) atau penggabungan atom (reaksi fusi).
- Energi mekanik dimiliki benda karena sifat geraknya, misal air terjun.
          Hukum kekekalan energi “Energi tidak dapat diciptakan dan tidak dapat dimusnahkan, tetapi hanya dapat diubah dari satu bentuk ke bentuk yang lain”
ENERGI MEKANIK
          Energi mekanik adalah energi yang dimiliki suatu benda karena sifat geraknya. Energi mekanik terdiri dari energi potensial dan energi kinetik.
Secara matematis dapat dituliuskan :
Em = Ep + Ek
dimana Em = Energi Mekanik
Energi Potensial
          Energi potensial adalah energi yang dimiliki benda karena posisinya (kedudukan) terhadap suatu acuan.
          Sebagai contoh sebuah batu yang kita angkat pada ketinggian tertentu memiliki energi potensial, jika batu kita lepas maka batu akan melakukan kerja yaitu bergerak ke bawah atau jatuh. Jika massa batu lebih besar maka energi yang dimiliki juga lebih besar, batu yang memiliki energi potensial ini karena gaya gravitasi bumi, energi ini disebut energi potensial bumi.
          Energi potensial bumi tergantung pada massa benda, gravitasi bumi dan ketinggian benda. Sehingga dapat dirumuskan:
Ep = m.g.h
dimana :
Ep = Energi potensial
m = massa benda
g = gaya gravitasi
h = tinggi benda
Energi Kinetik
          Energi kinetik adalah energi yang dimiliki benda karena geraknya. Makin besar kecepatan benda bergerak makin besar energi kinetiknya dan semakin besar massa benda yang bergerak makin besar pula energi kinetik yang dimilikinya.
Secara matematis dapat dirumuskan:
Ek = 1/2 ( m.v2 )
dimana :
Ek = Energi kinetik
m = massa benda
v = kecepatan benda



Sifat Fisika, Cabang-cabang Fisika, dan Hubunan Dengan Ilmu Lain

A. Sifat Fisika
·    Sifat fisika merupakan sifat materi yang dapat dilihat secara langsung dengan indra. 
·    Sifat fisika adalah perubahan yang dialami suatu benda tanpa membentuk zat baru
·    Sifat fisika diantaranya adalah : wujud zat, warna, bau, titik leleh, titik didih, massa jenis, kekerasan, kelarutan, kekeruhan dan kekentalan.
     1. Wujud Zat
         Wujud zat terbagi atas zat padat, cair, dan gas.
·              Zat Padat
       Zat padat mempunyai sifat bentuk dan volumenya tetap. Bentuk yang tetap dikarenakan partikel-partikel pada zat padat saling berdekatan (rapat), tersusun teratur dan mempunyai gaya tarik antar partikel yang sangat kuat. volumenya tetap dikarenakanbpartikel pada zat padat dapat bergerak dan berputar pada kedudukannya saja.
·              Zat Cair
      Zat cair mempunyai sifat bentuk yang berubah-ubah dan volumenya tetap. Bentuknya yang berubah-ubah dikarenakan partikel-partikel pada zat cair berdekatan tetapi renggang, tersusun teratur, dan gaya tarik antar partikel agak lemah. Volumenya tetap dikarenakan partikel pada zat cair mudah berpindah, tetapi tidak dapat meninggalkan kelompoknya. 
·               Zat Gas        
       Zat gas mempunyai sifat bentuk dan volume yang berubah-ubah. Bentuknya berubah-ubah dikarenakan partikel-partikel pada zat gas berjauhan, tersusun tidak teratur, dan gaya tarik antar partikel sangat lemah. Volumenya berubah-ubah karena partikel pada zat gas dapat bergerak bebas meninggalkan kelompoknya.  
     2. Kekeruhan (Turbidity)
       Kekeruhan terjadi pada zat cair. Kekeruhan cairan disebabkan adanya partikel suspensi yang halus. Jika sinar cahaya dilewatkan pada cairan yang keruh, maka intensitasnya akan berkurang karena dihamburkan. Hal ini bergantung pada konsentrasinya. Alat untuk mengetahui intensitas cahaya pada zat cair yang keruh atau untuk mengukur tingkat kekeruhan disebut turbidimetry.
     3. Kekentalan (Viskositas)
          Kekentalan adalah ukuran ketahanan zat cair untuk mengalir. Untuk mengetahui kekuatan mengalir (flow rate) zat cair, digunakan alat viskometer. Flow rate digunakan untuk menghitung indeks viskositas. Viskositas cairan terjadi karena gesekan molekul-molekul. 
          Viskositas juga sangat dipengaruhi oleh struktur molekul cairan. Jika struktur molekulnya kecil dan sederhana maka molekul tersebut dapat bergerak cepat, contohnya air. Dan sebaliknya, jika molekulnya besar dan saling bertautan, maka zat tersebut akan bergerak sangat lambat, contohnya oli. Molekul-molekul cairan yang bergerak cepat, dikatakan memiliki viskositas/kekentalan rendah, sedangkan apabila molekul cairan bergerak lambat, maka dikatakan memiliki viskositas/kekentalan yang tinggi. 
     4. Titik Didih
      Titik didih merupakan suhu ketika suatu zat mendidih. Mendidih berbeda dengan menguap, Mendidih terjadi pada suhu tertentu yaitu pada titik didih, sedangkan menguap terjadi pada suhu berapa saja di bawah titik didih. Contohnya, pada saat kita menjemur pakaian, maka airnya menguap bukan mendidih, sedangkan apabila kita memanaskan air di kompor hanya pada titik suhu tertentu air tersebut dapat mendidih. titik didih berbagai zat berbeda, bergantung pada struktur dan sifat bahan. 
       5. Titik Leleh
          Titik leleh merupakan suhu ketika zat padat berubah menjadi zat cair. Misalnya garam dapur jika dipanaskan akan meleleh menjadi cairan. Perubahan ini dipengaruhi oleh struktur kristal pada zat tersebut. Zat cair dan zat gas juga memiliki titik leleh, tetapi perubahannya tidak dapat diamati pada suhu kamar.
    6. Kelarutan 
          Larutan merupakan campuran homogen yang terdiri dari dua komponen, yaitu pelarut dan terlarut. Pelarut merupakan zat yang melarutkan, dan biasanya jumlahnya lebih banyak, sedangkan zat terlarut adalah zat yang dilarutkan, biasanya dengan jumlah yang lebih sedikit. Kelarutan dipengaruhi oleh berbagai faktor, diantaranya sebagai berikut :
          a) Suhu
       Pada saat kita melarutkan kopi dan gula, akan lebih cepat larut dalam air panas dibandingkan dengan air dingin. Mengapa demikian? Kenaikan suhu menyebabkan energi kinetik partikel zat bertambah sehingga partikel pada suhu yang tinggi akan bergerak lebih cepat dibandingkan dengan suhu yang rendah. Kondisi ini menyebabkan terjadinya tumbukan antara partikel zat pelarut dengan partikel zat terlarut.
          b) Volume Pelarut
        Pada saat kita melarutkan 2 sendok gula kedalam 100 mL air, dan 2 sendok gula kedalam 500 mL air, maka gula tersebut akan lebih cepat larut dalam 500 mL air, mengapa demikian?. Semakin besar volume pelarut, maka jumlah partikel pelarut akan semakin banyak. kondisi ini memungkinkan lebih banyak terjadinya tumbukan antara zat pelarut dengan zat terlarut, sehingga zat padat pada umumnya akan lebih cepat larut. 
          c) Ukuran Zat Terlarut
        Apabila kita melarutkan 2 sendok gula pasir kedalam 100 mL air, dan 1 sendok gula batu kedalam 100 mL air, mengapa yang lebih cepat larut adalah 2 sendok gula pasir?. Hal ini karena gula pasir halus memiliki ukuran partikel yang lebih kecil sehingga memiliki permukaan sentuh yang lebih luas dibandingkan gula batu. Jadi, makin kecil ukuran zat terlarut, makin besar kelarutan zat tersebut.
          d) Jenis zat terlarut
          e) Jenis Pelarut
B. Cabang-Cabang Ilmu Fisika
Cabang-Cabang ilmu fisika sangat banyak, antara lain adalah :
1.         Mekanika adalah cabang ilmu fisika yang mempelajari tentang gerak. Mekanika klasik terbagi atas dua bagian, yaitu Kinematika dan Dinamika.
·       Kinematika membahas bagaimana suatu objek dapat bergerak tanpa menyelidiki sebab-sebab apa yang menyebabkan suatu objek dapat bergerak
·       Dinamika mempelajari bagaimana suatu objek dapat bergerak dengan menyelidiki penyebabnya.
2.        Mekanika Kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom.
3.        Mekanika Fluida adalah cabang ilmu fisika yang mempelajari tentang fluida (dapat berupa cairan dan gas) 
    Yang berkaitan dengan Listrik dan Magnet :
4.        Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam satu alat seperti komputer, peralatan elektronik, semikonduktor, dan lain-lain.
5.        Teknik Elektro atau Teknik Listrik adalah salah satu bidang ilmu teknik mengenai aplikasi listrik untuk memenuhi kebutuhan masyarakat.
6.        Elektrostatis adalah ilmu yang mempelajari tentang listrik statis
7.        Elektrodinamis adalah ilmu yang mempelajari tentang listrik dinamis
8.        Bioelektromagnetik adalah disiplin ilmu yang mempelajari tentang fenomena listrik, magnetik, dan elektromagnetik yang muncul pada jaringan makhluk hidup 
9.        Termodinamika adalah kajian tentang energi atau panas yang berpindah
10.    Fisika Inti adalah ilmu fisika yang mengkaji atom/bagian-bagian atom
11.    Fisika Gelombang adalah cabang ilmu fisika yang mempelajari tentang gelombang
12.    Fisika Optik (Geometri) adalah ilmu fisika yang mempelajari tentang cahaya
13.    Kosmografi/Astronomi adalah ilmu yang mempelajari tentang berbintangan dan benda-benda angkasa  
14.    Fisika Kedokteran (Fisika Medis) membahas bagaimana penggunaan ilmu fisika dalam bidang kedokteran (medis), diantaranya :
·    Biomekanika meliputi gaya dan hukum fluida dalam tubuh
·    Bioakuistik (bunyi dan efeknya pada sel hidup/ manusia)
·    Biooptik (mata dan penggunaan alat optik)
·    Biolistrik (sistem listrik pada sel hidup terutama pada jantung manusia)

15.    Fisika Radiasi adalah ilmu fisika yang mempelajari setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain.
16.    Fisika lingkungan adalah ilmu yang mempelajari kaitan fenomena fisika dengan lingkungan. beberapa di antaranya antara lain :
·    Fisika tanah dalam/Bumi
·    Fisika tanah permukaan
·    Fisika udara
·    Hidrologi
·    Fisika gempa (seismografi fisik)
·    Fisika laut (oseanografi fisik)
·    Meteorologi
·    Fisika awan
·    Fisika Atmosfer
17.    Geofisika adalah perpaduan antara ilmu fisika, geografi, kimia, dan matematika. Dari segi Fisika yang dipelajari adalah :
·    Ilmu gempa atau Seismologi yang mempelajari tentang gempa
·    Magnet bumi
·    Gravitasi termasuk pasang surut dan anomali gravitasi bumi
·    Geo-Elektro (aspek listrik bumi), dll
          selain yang diuraikan di atas, seiring perkembangan zaman, ilmu fisika telah menjadi bagian dari segi kehidupan misalnya :
·    Ekonomifisika yang merupakan aplikasi fisika dalam bidang ekonomi
·    Fisika Komputasi adalah solusi persamaan-persamaan Fisika- Matematik dengan menggunakan, dan lain-lain yang mengakibatkan Fisika itu selalu ada dalam berbagai aspek.
C. Hubungan Fisika dengan Ilmu Pengetahuan Lain
          Fisika merupakan ilmu yang sangat fundamental diantara semua Ilmu Pengetahuan Alam. Misalnya saja pada Kimia, susunan molekul dan cara-cara praktis dalam mengubah molekul tertentu menjadi yang lain menggunakan metode penerapan hukum-hukum Fisika. Biologi juga harus bersandar ketat pada ilmu fisika dan kimia untuk menerangkan proses-proses yang berlangsung pada makhluk hidup. 
          Tujuan mempelajari Ilmu Fisika adalah agar kita dapat mengetahui bagian-bagian dasar dari benda dan mengerti interaksi antara benda-benda, serta mampu menjelaskan mengenai fenomena-fenomena alam yang terjadi. Walaupun fisika terbagi atas beberapa bidang, hukum fisika berlaku universal. Tinjauan suatu fenomena dari bidang fisika tertentu akan memperoleh hasil yang sama apabila di tinjau dari bidang fisika lain. 
          Selain itu, konsep-konsep dasar fisika tidak saja mendukung perkembangan fisika itu sendiri, tetapi juga mendukung perkembangan ilmu lain dan teknologi. Ilmu fisika menunjang riset murni maupun terapan. Ahli-ahli geologi dalam risetnya menggunakan metode-metode gravimetri, akustik, listrik dan mekanika. peralatan modern di rumah-rumah sakit menerapkan prinsip ilmu fisika dan Ahli-ahli astronomi memerlukan optik spektografi dan teknik radio.


Pengukuran, Besaran dan Dimensi
PENGUKURAN
          Pengukuran adalah membandingkan sesuatu dengan sesuatu yang lain sebagai patokan. Dalam pengukuran, terdapat 2 faktor utama, yaitu perbandingan dan patokan (standar). Sebagai contoh, Adi dan Budi ingin mengukur panjang meja dengan menggunakan jengkal tangan. Kita bandingkan hasil pengukuran meja menggunakan tangan Adi, dengan tangan Budi. Ternyata, hasil pengukuran meja denga tangan Adi sebesar 25 jengkal, sedangkan tangan Budi sebesar 30 jengkal. Dengan demikian, pengukuran juga dapat didefinisikan suatu proses membandingkan suatu besaran dengan besaran lain (sejenis) yang dipakai sebagai satuan (pembanding dalam pengukuran)
Pengukuran dapat dilakukan dengan 2 cara :
1) Pengukuran Langsung
          Suatu pengukuran dengan menggunakan alat ukur dan langsung memberikan hasilnya.
    Contoh : pengukuran panjang meja
2) Pengukuran Tidak Langsung
          Suatu pengukuran dengan menggunakan cara dan perhitungan terlebih dahulu, baru memberikan hasilnya.
    Contoh : Pengukuran Benda-Benda kuno
Pengukuran Berdasarkan Sistem Metrik dan SI
          Setelah abad ke-17, para ilmuwan menggunakan sistem pengukuran yang pada awalnya disebut sistem pengukuran metrik. Sistem ini merupakan satuan yang dahulu dipakai dalam dunia pendidikan dan pengetahuan. Sistem metrik dikelompokkan menjadi Sistem Metrik Besar atau MKS (Meter Kilogram Second), yang pada tahun 1960 satuan ini dipergunakan dan diresmikan menjadi Sistem Internasional (SI) atau biasa disebut dengan Sistem Metrik Kecil atau CGS (Centimeter Gram Second).
          Sistem Metrik diusulkan menjadi SI, karena satuan-satuan dalam sistem ini dihubungkan dengan bilangan pokok 10, sehingga lebih memudahkan penggunaannya. Berikut akan adalah tabel awalan sistem metrik yang digunakan dalam SI.
Description: http://fembrisma.files.wordpress.com/2011/12/tabel.jpg?w=627
awalan satuan metrik dalam besaran panjang
Description: tabel si

a) Sistem Internasional untuk Panjang
          Hasil pengukuran besaran panjang biasanya dinyatakan dalam satuan meter, centimeter, milimeter atau kilometer. Satuan Besaran dalam sistem SI adalah Meter. Pada mulanya satu meter ditetapkan sama dengan panjang sepersepuluh juta (1/10000000) dari jarak kutub utara ke khatulistiwa melalui Paris. Kemudian dibuatlah batang meter standar dari campuran Platina-Iridium. Satu meter didefinisikan sebagai jarak dua goresan pada batang ketika bersuhu 0ºC. 
          Namun, batang meter standar dapat berubah dan rusak karena dipengaruhi oleh suhu, serta menimbulkan kesulitan dalam menentukan ketelitian pengukuran. Oleh karena itu, pada tahun 1960 definisi satu meter diubah. Satu meter didefinisikan sebagai jarak 1650763,72 kali panjang gelombang sinar jingga yang dipancarkan oleh atom gas krypton-86 dalam ruang hampa pada suatu lucutan listrik.
          Pada Tahun 1983, Konferensi Internasional tentang timbangan  dan ukuran memutuskan bahwa satu meter merupakan jarak yang ditempuh cahaya pada selang waktu 1/299792458 sekon. Penggunaan kecepatan cahaya ini, karena nilainya dianggap selalu konstan.

b) Sistem Internasional untuk Massa
          Besaran massa dalam satuan SI dinyatakan dalam satuan kilogram (Kg). Pada mulanya, para ahli mendefinisikan satu kilogram sebagai massa sebuah silinder yang terbuat dari bahan campuran Platina dan Iridium yang disimpan di Sevres, dekat Paris. Untuk mendapatkan ketelitian yang lebih baik, massa satu kilogram didefinisikan sebagai massa satu liter air murni pada suhu 4oC.
Description: prototype
c) Sistem Internasional untuk Waktu 
          Besaran waktu dinyatakan dalam satuan detik atau sekon dalam SI. Pada awalnya satuan waktu dinyatakan atas dasar waktu rotasi bumi pada porosnya, yaitu 1 hari. Satu detik didefinisikan sebagai 1/26400 kali satu hari rata-rata. Satu hari rata-rata sama dengan 24 jam = 24 x 60 x 60 = 86400 detik. Karena satu hari matahari tidak selalu tetap dari waktu ke waktu, maka pada tahun 1956 para ahli menetapkan definisi baru. Satu detik adalah selang waktu yang diperlukan oleh atom cesium-133 untuk melakukan getaran sebanyak 9192631770 kali.
d) Sistem Internasional untuk Suhu
Satu Kelvin adalah 1/273,16 suhu titik tripel air
e) Sistem Internasional untuk Kuat Arus Listrik
          Satu Ampere adalah arus tetap yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga dan dengan luas penampang yang dapat diabaikan dan dipisahkan sejauh satu meter dari vakum, yang akan menghasilkan gaya sebesar 2x10^-7 N m^-1.
f) Sistem Internasional untuk Intensitas Cahaya
          Satu candela adalah intensitas cahaya yang besarnya sama dengan intensitas sebuah sumber cahaya pada satu arah tertentu yang memancarkan radiasi monokhromatik dengan frekuensi 540 x 10^12 Hz dan memiliki intensitas pancaran pada arah tersebut sebesar 1/683 watt per steradian.
g) Sistem Internasional Jumlah Zat
          satu mol sama dengan jumlah zat yang mengandung satuan elementer sebanyak jumlah atom didalam 0,012 kg karbon -12. satuan elementer dapat berupa atom, molekul, ion, elektron, dll.
BESARAN
          Besaran adalah sesuatu yang dapat diukur dan dinyatakan dalam angka serta mempunyai nilai satuan. Sistem satuan dalam besaran fisika prinsipnya bersifat standar/baku, yaitu bersifat tetap, berlaku universal, dan dapat digunakan setiap saat dengan tetap. Besaran dalam fisika dikelompokkan menjadi 2, yaitu Besaran Pokok dan Besaran Turunan.
1. Besaran Pokok
          Besaran Pokok adalah besaran yang sudah ditetapkan terlebih dahulu. Berikut ini merupakan tabel Besaran pokok dalam sistem Metrik dengan satuan MKS (Meter Kilogram Second) dan CGS (Centimeter Gram Second) :
N0
Besaran Pokok
Satuan SI/MKKS
Singkatan
Satuan Sistem CGS
Singkatan
1
Panjang
meter
m
centimeter
cm
2
Massa
kilogram
kg
gram
g
3
Waktu
detik
s
detik
s
4
Suhu
kelvin
K
Kelvin
k
5
Kuat arus listrik
ampere
A
stat ampere
statA
6
Intensitas cahaya
candela
Cd
candela
Cd
7
Jumlah zat
kilo mol
kmol
mol
mol

2. Besaran Turunan
          Besaran Turunan merupakan besaran yang dijabarkan dari besaran-besaran pokok. Contohnya : Luas, Kecepatan, Percepatan,dll. Berikut tabel besaran turunan beserta satuannya :
N0
Besaran Turunan
Penjabaran dari Besaran Pokok
Satuan dalam MKKS
1
Luas
Panjang × Lebar
m2
2
Volume
Panjang × Lebar × Tinggi
m3
3
Massa Jenis
Massa : Volume
kg/m3
4
Kecepatan
Perpindahan : Waktu
m/s
5
Percepatan
Kecepatan : Waktu
m/s2
6
Gaya
Massa × Percepatan
newton (N) = kg.m/s2
7
Usaha
Gaya × Perpindahan
joule (J) = kg.m2/s2
8
Daya
Usaha : Waktu
watt (W) = kg.m2/s3
9
Tekanan
Gaya : Luas
pascal (Pa) = N/m2
10
Momentum
Massa × Kecepatan
kg.m/s

DIMENSI
          Dimensi menyatakan sifat fisis suatu besaran, atau dengan kata lain dimensi merupakan simbol dari besaran pokok. Dimensi dapat dipakai untuk mengecek rumus-rumus fisika. Rumus Fisika yang benar, harus mempunyai dimensi yang sama pada kedua ruas. 
          Dimensi Besaran fisika diwakili dengan simbol, misalnya M, L dan T. M mewakili Massa (mass), L mewakili Panjang (Length), dan T mewakili waktu (Time). Ada 2 macam dimensi, yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan Panjang), dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua besaran turunan yang dinyatakan dalam dimensi primer. Contoh Dimensi Sekunder : Dimensi Gaya = M L T^2 (kuadrat).
          Didalam suatu pengukuran ada dua kemungkinan yang akan terjadi yaitu mendapat angka yang terlalu kecil, atau angka yang terlalu besar. Untuk menyederhanakan permasalahan tersebut maka dalam pertemuan pada tahun 1960-1975 komite internasional menetapkan awalan pada satuan-satuan tersebut. 
Manfaat dimensi dalam Fisika, adalah :
1. Dapat digunakan untuk membuktikan dua besaran sama atau tidak. Apabila dua besaran sama, jika keduanya memiliki dimensi yang sama atau keduanya merupakan besaran vektor atau skalar.
2. dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar.
3. dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui 

Apa perbedaan Satuan dengan Dimensi?
a) Satuan
·    Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu. (Contoh pada besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer). 
·    Dua satuan yang berbeda dapat dikonversi satu sama lain. (Contoh : 1 m = 39,37 in, angka 39,37 ini disebut sebagai faktor konversi)
b) Dimensi
·    Dimensi pada Besaran panjang hanya satu, yaitu L
·    Tidak ada faktor konversi antar lambang dimensi 

Sumber :